Analysis of archaeological bones from different sites in Egypt by a multiple techniques (XRD, EDX, FTIR)

Part of : Mediterranean archaeology & archaeometry : international journal ; Vol.16, No.2, 2016, pages 149-158

Issue:
Pages:
149-158
Author:
Abstract:
Archaeological bones were collected from different sites and conditions in Egypt to be analyzed by multitechniques to determine the reaction of bones in different burial environments (dry and moist conditions). Different analytical techniques have been used to accurately recognize archaeological bones such as X-ray diffraction, energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR). The results revealed that XRD confirms that all bone samples taken from archaeological sites have high crystallinity. EDX analysis showed different types of elements. It also proved the increasing of calcium and phosphor elements in archaeological samples compared to the control sample. FTIR indicated deterioration of amides groups compared to the control sample
Subject:
Subject (LC):
Keywords:
Archaeological bone, deterioration, analysis, XRD, EDX, FTIR
Notes:
Περιέχει 4 εικόνες και 2 πίνακες
References (1):
  1. Abdel‐Maksoud, G. (2010) Comparison between the Properties of 'Accelerated ‐ aged' bones and archaeological bones, Mediterranean Archaeology and Archaeometry, Vol. 10, No. 1, 89‐112.Allmae, R., Limbo, S. J., Heapost, L. and Vers, E. (2012) The Content of Chemical Elements in Archaeological Human Bones as A source of Nutrition Research, Papers on Anthropology XXI, pp. 27-49.Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston, T., Ritchie, R. O. (2011) Characterization of the ef-fects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone, Bio-materials 32, pp. 8892-8904.Bonniere, M. (2010) Determination of the difference between burnt and unburnt bones for archeological and modern bones by FTIR-ATR analysis (University of Teesside), pp. 1-72.Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C.I. and Roberts, J.P. (2002), The survival of organic matter in bone: A review, Archaeometry, 44, pp. 383-394.Couoh, L. and Ruvalcaba, S. J. L. (2007) Proton Beam Characterization of Bone Remains from the Middle Mesoamerican Formative, Proceedings of the XI International Conference on PIXE and its Analytical Applications Puebla (Mexico, May 25-29), pp. 1-4.Darrah, T. H. (2009) Inorganic Trace Element Composition of Modern Human Bones: Relation to Bone Pathology and Geographical Provenance, University of Rochester (New York), pp. 186-187.Farlow, J. O. and Argast, A. (2006) Preseration of fossil bone from the pipe creek sinkhole (late neogene, Grant County, Indiana, U.S.A), J. Paleont. Soc. Korea. Vol. 22, No. 1, pp. 51-75.Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F. and Figueiredo, H. (2010) Effect of the calcination tempera-ture on the composition and microstructure of hydroxyapatite derived from human and animal bone, Ceram-ics International 36, pp. 2383-2393.Figueiredo, M. M., Gamelas, J. A. F. and Martins, A. G. (2012) Characterization of Bone and Bone-Based Graft Materials Using FTIR Spectroscopy, Infrared Spectroscopy - Life and Biomedical Sciences (Portugal), pp. 316-338.Generosi, A., Rau, J. V., Komlev, V. S., Albertini, V. R., Fedotov, A. Y., Barinov, S. M. (2010) Anomalous Hardening Be-havior of a Calcium Phosphate Bone Cement, J. Phys. Chem. B, 114, pp. 973-979.Godfrey, I. M., Ghisalberti, E. L., Beng, E. W., Byrne, L. T. and Richardson, G. W. (2002) The Analysis of Ivory from a Marine Environment, Studies in Conservation, Vol. 47, No. 1, pp. 29 - 45.Götherstrom, A., Collins, M. J., Angerbjorn, A., Lidén, K. (2002) Bone preservation and DNA amplification, Archaeometry, Vol. 44: 395‐404.Koon, H. E. C., Nicholson, R. A., Collins, M. J. A. (2003) A practical approach to the identification of low temperature heated bone using TEM, J. Archaeological Science, Vol. 30, 1393‐1399.Landi, E. (2003) Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 23(15), 2931-2937.Lebon, M., Reiche, I., Fröhlich, F., Bahain, J. J., Falguères, C. (2008) Characterization of archaeological burnt bones: con-tribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1ν3 PO4 domain, Anal Bioanal Chem 392, 1479 - 1488.Nielsen-Marsh, C. M., Hedges, R. E. M. (1999) Bone porosity and the use of mercury intrusion porosimetry in bone dia-genesis studies. Archaeometry 41(1), pp. 165-174.Ortner, D. J., vonEndt, D. W., Robinson, M. S. (1972) The Effect of Temperature on Protein Decay in Bone: Its Significance in Nitrogen Dating of Archaeological Specimens, American Antiquity, Vol. 37, No. 4, pp. 514-520.Pate, F. D. (1994) Bone Chemistry and Paleodiet, Journal of Archaeological Method and Theory, Vol. 1, No. 2, pp. 161-209.Piga, G., Santos-Cubedo, A., Brunetti, A., Piccinini, M., Malgosa, A., Napolitano, E., Enzo, S. (2011) A multi-technique approach by XRD, XRF, FT-IR to characterize the diagenesis of dinosaur bones from Spain, Palaeogeography, Palaeoclimatology, Palaeoecology 310, pp. 92–107.Rogers, K. D. and Daniels, P. (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral micro-structure, Biomaterials 23, pp. 2577-2585.Stone, T. T., Dickel, D. N., Doran, G. H. (1990) The Preservation and Conservation of Waterlogged Bone from the Windover Site, Florida: AComparison of Methods, Journal of Field Archaeology, Vol. 17, No. 2, pp. 177-186.Swanston, T , Varney, T., Coulthard, I., Feng, R., Bewer, B., Murphy, R., Hennig, C. and Cooper, D. (2012) Element locali-zation in archaeological bone using synchrotron radiation X-ray fluorescence: identification of biogenic up-take, Journal of Archaeological Science xxx, pp. 1-5.Theppeang, K., Glass, T. A., Bandeen-Roche, K., Todd, A. C., Rohde, C. A., Links, J. M. and Schwartz, B. S. (2008) Associ-ations of Bone Mineral Density and Lead Levels in Blood, Tibia, and Patella in Urban-Dwelling Women, Envi-ronmental Health Perspectives, Vol. 116, No. 6, pp. 784-790.Thompson, T. J. U., Gauthier, M. and Islam, M. (2009) 'The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone', Journal of Archaeological Science, 36 (3), pp.910-914.Todisco, D., Monchot, H. (2008) Bone Weathering in a Periglacial Environment: The Tayara Site (KbFk-7), Qikirtaq Island, Nunavik (Canada), vol. 61, NO. 1, P. 87-101.Wess, T. J., Drakopoulos, M., Snigirev, A., Wouters, J., Paris, O., Fratzl, P., Collins, M., J. Hiller, and Nielsen, K. (2001) The Use of Small-Angle X-Ray Diffraction Studies for the Analysis of Structural Features in Archaeological Samples, Archaeometry 43, 1, pp. 117-129.White, E. M., Hannus L. A. (1983) Chemical Weathering of Bone in Archaeological Soils, American Antiquity, Vol. 48, No. 2, pp. 316-322.