Logical Symbolism and Ancient Logic

Part of : Philosophical inquiry ; Vol.39, No.1, 2015, pages 181-188

Issue:
Pages:
181-188
Author:
Abstract:
No abstract (available).
Subject:
Subject (LC):
Notes:
Dedicated to Dionysis, my dear friend and colleague for 40 years
References (1):
  1. [I] Aristotle. Categories and De Interpretatione. Translated with notes by J. L. Ackrill. Oxford, 1963.[2] Aristotle. Topica et Sophistici Elenchi. Ed. W. D. Ross. Oxford, 1958.[3] Aristotle. Aristotle's Prior and Posterior Analytics. A revised text with introduction and commentary by W. D. Ross. Oxford, 1949.[4] J. Christianidis: The way of Diophantus: Some clarifications on Diophantus' method of solution, Historia Mathematica 34 (2007), 289-305.[5] Diogenes Laertius. Lives of Eminent Philosophers. Edited with an English trans. By R. D. Hicks. 2 vols. London: William Heinemann, 1925.[6] Diophante d'Alexandrie. Les six livres arithmétiques et le livre des nombres polygones. OEevres traduites pour la première fois du grec en français avec une introduction et des notes par Paul ver Eecke. Paris: Albert Blanchard, 1959.[7] G. Frege: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle a.S.: Louis Nebert, 1879. Translated by S. Bauer-Mengelberg as Begriffsschrift, a formal language of pure thought modeled upon that of arithmetic, in J. van Heijenoort (ed.), From Frege to Godei: A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press, 1967.[8] G. Frege: Die Grundlagen der Arithmetik, eine logisch-mathematische Untersuchung über den Begriff der Zahl, Breslau: W. Koebner, 1884. Translated by J. L. Austin as The Foundations of Arithmetic, Oxford, 1950.[9] G. Frege: Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, vol. i, Jena, 1893, and vol. ii, 1903.[10] W. Kneale and M. Kneale: The development of logic, Oxford: Clarendon Press, 1984.[II] J. Lukasiewicz. Aristotle's Syllogistic from the Standpoint of Modern Formal Logic. Second edition enlarged, Oxford, 1957.[12] Sextus Empiricus. Opera. 3 vols. Ed. H. Mutschmann and J. Mau. Leipzig, 1912-54.[13] Τ J. Smiley: What is a syllogism? Journal of Philosophical Logic 2 (1973), 136-154.[14] J. Tappenden: The Riemannian Background to Frege's Philosophy, in The Architecture of Modern Mathematics: Essays in History and Philosophy, J. Ferreirós and J. Gray (eds.), Oxford: Oxford University Press, 2006, 97-132.[15] Γ. Χριστιανίδης και Δ. Διαλέτης: Μια νέα ανάγνωση της Εισαγωγής των "Αριθμητικών" του Διόφαντου, στο Δ. Α. Αναπολιτάνος (επιμ.), Στιγμές και Διάρκειες,Νεφέλη, 2009, 343-376.