Τα άπαντα του Αρχιμήδους
Part of : Παρνασσός ; Vol.ΙΔ, No.4, 1972, pages 586-608
Issue:
Pages:
586-608
Parallel Title:
The complete works of Archimedes
Section Title:
Μελέτη
Author:
Abstract:
The 1st vohime of the complete works of Archimedes was published in two parts, in 1970, in Athens. The 2nd und 3rd volumes are under printing.The library of the University of Aligarh in India has informed us that there exist 12.000 manuscripts, the majority of which are not yet included in catalogues. Also, the library of Patna in India has sent us photocopies of 40 works «as manuscript book of Greeks». Two of those works (n° 27 and n° 28) are written by Archimedes, but this is not obvious from the titles of the list. The list of the works is exposed here in : a) modern greek language, 2) arabian, and 3) arabian with latin characters. Four of the 40 works are not of mathematical or astrological content. Two of those, n° 23 and n° 24 deal with the history and celebrationdays of Jews. Follows list of the works of Archimedes preserved in arabic language and of their translators.The 3rd volume of the complete works of Archimedes contains all his works preserved in arabian language such as :1. Lemmata oc' (Liber Assumptorum a') (propositions 15).2. On Right-angled Triangles (propositions 13).3. On Circles (propositions 2).4. On the construction of the side of a regular heptagon inscribedin a circle (propositions 2).5. On Tangent circles (propositions 14).6. Estimation of the altitude and area of triangles from their Sides(propositions 2).7. Beginning of Geometry (Elements) (propositions 19).8. On the semi-regular 14-hedron (proposition 1).9. Archimedes clock.A reconstruction of the works 1 - 7 of the original greek text in Sicilian doric dialect of Archimedes is exposed. In the treatise «Lemmata» the title «Lemmata oc'» was given, because Archimedes wrote another treatise under the same title concerning conic sections, which is now lost (v. Ochoumenon II, theorem 6).Of the 17 propositions on the regular heptagon, the 1 - 13 refer to the Right-angled Triangles and the 14 - 15 to Circles. In view of the fact that the treatises of Archimedes on Right-angled Triangles and on Circles are lost, vve conclude that the propositions 1-13 and 14-15 belong, respectively, to the lost treatises.The treatise preserved by al - Haitam, on the regular heptagon, is presumably an adaptation of a treatise by Archimedes himself. This can also be deduced from the greek disposition of the demonstration and from the use of the terms given (data), which in the german tranlation are writen «erkannt» instead of «gegeben».To interprete the phenomenon of the transmission of greek mathematical knowledge to the Arabs we note : the fire of the greek Library of Alexandria by Iulius Ceasar when 500.000 volumes approximately were destroyed (47 B.C.), 2) the fire of the Library of Serapeion of Alexandria owing to religious fanatism, which contained almost 100.000 rolls of manuscripts towards 391 A.D. under Theophilos «Patriarch of Alexandria and all Africa», 3) the destruction of books during 529 A.D., also due to religious fanatism, while the Academie of Plato was shut and 4) the allotment of the greek manuscripts to the Chalif Al - Mamun by the defeated byzantine emperor Michael II (823 A.D.).
Subject:
Subject (LC):
Keywords:
αστρονομία